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ABSTRACT 

Design Flood Estimation (DFE) is required for the design of hydraulic structures and to limit 

the risk of failure with the consequent potential loss of life and economic losses. The DFE 

methods currently used in South Africa (SA) need to be revised and updated. The Soil 

Conservation Service Curve Number (SCS-CN) model is a widely used DFE method for small 

catchments. The stormflow estimated using the SCS-CN equation is extremely sensitive to the 

Curve Number (CN) used. However, there is uncertainty surrounding the development and 

origin of the published CN tables used in practice. The relatively long periods of observed 

rainfall-runoff (P-Q) data, that are currently available in SA, could be used to assess the 

performance of CN derivation techniques to derive CNs specific to SA. The general approach 

of the MSc Eng study was to investigate whether the published CNs could be replicated using 

observed and simulated data, and to evaluate the performance of the SCS-CN equation when 

applied with published CNs or with the CNs derived using observed P-Q data from small South 

African catchments. The results from the study showed that CNs derived with a coefficient of 

initial abstraction (c) = 0.1 that were applied with the SCS-CN equation performed better than 

the published CNs that were derived with c = 0.2. In SA, the recommended value of c is 0.1, 

therefore the definition of the Potential Maximum Retention, S, and the CN has changed from 

the original version of the SCS-CN model where the recommended value of c is 0.2. The 

published CNs were derived with c = 0.2 and therefore there is an inconsistency between the c 

value used to derive the published CN values and the c value recommended for use with the 

SCS-SA model. The same c has to be used to calculate the CN and stormflow depths using the 

SCS-CN equation. The results from the study also indicated that design stormflow depths are 

better estimated when data derived CNs are used with the SCS-CN equation. However, it is 

also important to improve the conversion of stormflow depths to peak discharge values when 

using the SCS-SA model. Therefore, one aim of the PhD study is to assess the performance of 

the SCS-SA model with a national scale dataset containing parameter values that represent the 

entire country, and to improve the transformation of design volumes into design peak discharge 

estimates. Hydrological modelling should include uncertainty analysis to allow for risk-

informed decision making and design. When using P-Q methods for DFE, generally only the 

probabilistic nature of rainfall is accounted for, however, if all important input variables are 

treated probabilistically, the key shortcomings associated with P-Q methods for DFE could be 

addressed. Although there is a plethora of literature focussed on the principles and techniques 

that deal with uncertainty, there is a lack of clear rules to implement these techniques, and 



 

iii 

estimation of uncertainty is not applied in DFE practice in SA. Hence, a second aim of the PhD 

is to conduct a thorough review of literature pertaining to quantifying uncertainty when 

conducting DFE, and to subsequently develop a methodology to determine the uncertainty 

associated with the widely used DFE methods that are applied in SA. 
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1. BACKGROUND TO THE STUDY AND LITERATURE REVIEW  

The evaluation of the risk associated with a flood by relating a flood event with an exceedance 

probability, or Return Period (RP), is the accepted approach to Design Flood Estimation (DFE) 

in many countries (Smithers, 2012; Kang et al., 2013). These design flood estimates are 

essential to design hydraulic infrastructure such as bridges, culverts, dams, and other drainage 

structures (Lamb et al., 2016).  

Discharge data from rivers in Africa have shown an increase in the annual maximum peak 

discharge after 1980 in Western and Southern Africa (Tramblay et al., 2020). Furthermore, 

various studies have shown that there is a correlation between global climate change and flood 

risk (Alfieri et al., 2017; Do et al., 2020). Li et al. (2016) reported that global climate change 

has resulted in an increased occurrence of flood disasters in Africa, and economic losses due 

to floods are larger in developed African countries, such as South Africa. The economic and 

social problems caused by recent flooding, and the likelihood of increased rainfall variability 

in the future, highlight that DFE techniques that are used in South Africa are outdated and 

require review or updating. As a consequence, a National Flood Studies Programme (NFSP) 

was initiated to update DFE procedures used in South Africa (Smithers, 2016). 

The Soil Conservation Service Curve Number (SCS-CN) model is a widely used event-based 

Rainfall-Runoff (P-Q) model used globally for DFE, and it forms the foundation for various 

other runoff models (Schulze, 1989; Harbor, 1994; Hawkins et al., 2009; Aichele and 

Andresen, 2013). The SCS-CN method did not undergo critical review after it was made 

available for use (Hawkins et al., 2009; Woodward, 2017). Therefore, the published Curve 

Number (CN) values that were derived using P-Q data from small agricultural catchments in 

the United States of America (USA) should only serve as a guide and users of the method 

should determine CN values using local P-Q data to account for any deviations from the 

published CN values (Hawkins et al., 2009; Stewart et al., 2011; Tedela et al., 2011). It has 

been recognised that certain aspects about the SCS-CN methodology, such as the accuracy of 

the published CNs, are inconsistent. Consequently, numerous studies have been undertaken to 

verify the SCS equation and published CN values (Hjelmfelt, 1991; Ponce and Hawkins, 1996; 

Hawkins et al., 2009; Maharaj, 2020; Smithers et al., 2021). Despite this, the published CN 

values derived by the SCS are still widely used internationally, including in South Africa.  
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Dlamini (2019) applied a Joint Probability Approach (JPA) to the SCS-SA model (Ensemble 

SCS-SA) to derive flood frequency curves. In the Ensemble SCS-SA model, the input design 

rainfall and the main input model parameters (excluding the CN) are treated probabilistically. 

The results obtained by Dlamini (2019) have shown that the standard single event SCS-SA 

model performed poorly when using published CN values (CNpublished). This was confirmed by 

the results of the analysis of CNpublished values by Maharaj (2020) for 11 South African 

catchments which indicated that the published CNs resulted in poor estimates of design floods 

when compared with observed stormflow depths. Consequently, CNs derived by Maharaj 

(2020) using observed and simulated P-Q values, were evaluated to determine whether the 

derived CNs result in better estimates of observed design stormflow depths. In the pilot study, 

the CNs calculated with a coefficient of initial abstraction (c) equal to 0.1 and design observed 

or simulated P-Q depths for the 10-year return period resulted in improved estimates of design 

observed stormflow depths. 

The relationship between the Maximum Potential Soil Water Retention (S) and Initial 

abstraction (Ia) was derived by the SCS, using observed P-Q records from individual storms on 

catchments in the USA that were less than four hectares, and the c value was found to be 0.2 

by doing a linear regression of Ia on S (Schulze and Arnold, 1979). A value of 0.2 for the 

coefficient of initial abstraction was deemed too high for small to medium storms and it was 

suggested that a value of 0.1 be used for design analysis in the SCS-SA model (Schulze et al., 

1984; Schulze and Schmidt, 1987). According to Plummer and Woodward (1998), each unique 

relationship between the Ia and S requires an exclusive set of CNs. Maharaj (2020) also 

highlighted that the calculated CN is sensitive to the c value and recommended that the same c 

value used to derive the CNs should also be used to estimate design stormflow depths when 

using the SCS-CN equation. This is not currently the case in South Africa where a value of c 

= 0.1 is recommended but used with CNs derived with c = 0.2. The CNs currently used in South 

Africa were derived and interpolated using observed data and land cover and soils 

classifications developed for use with catchments in the USA, and Hawkins (1975) stressed the 

importance of accurate CN estimates because the SCS-CN equation is more sensitive to errors 

in CNs than errors in rainfall of the same magnitude. With the sensitivity of the simulated 

hydrological responses to the c value and CNs used, it is therefore vital to use a c-value and 

CN that best represents the prevailing land cover, soil type and hydrological condition 

representative of catchments in South Africa (Maharaj, 2020).  
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Deterministic methods for DFE are routinely used for the design of hydraulic infrastructure 

(Micovic et al., 2017). However, hydrological modelling should include uncertainty 

assessments to allow for risk-informed decision making and design (Berbića et al., 2015; Teng 

et al., 2017). Many different sources of epistemic and natural uncertainties, such as knowledge 

deficiency or natural variability impact DFE (Boelee et al., 2017; Ball et al., 2019; Boelee et 

al., 2019). There are various techniques that may be used to quantify the uncertainty associated 

with the outputs from DFE models (Boelee et al., 2019). Although there is interest in the impact 

that uncertainty has on DFE, and a plethora of literature has focussed on the principles and 

techniques that deal with uncertainty, there is a lack of clear guidelines or a methodical 

approach to implement these techniques (Beven, 2006; Montanari, 2007; Montanari et al., 

2009; Ball et al., 2019).  

The currently used P-Q DFE techniques such as the design event approaches do not take the 

probabilistic nature of key input variables, except for P, into account (Rahman et al., 2002). To 

estimate the likelihood of a flood, the probability of high and extreme values of each variable 

occurring simultaneously need to be known (Hawkes, 2008). According to Kuczera et al. 

(2006), the design flood approaches that are traditionally used lack the rigour of joint 

probability analyses. Hawkes (2008) defines joint probability as the likelihood of two or more 

conditions happening concurrently. Kuczera et al. (2006) stated that event and total joint 

probability methods with a firm joint probability framework need to be used for DFE. Rahman 

et al. (2002) proposed the joint probability and continuous simulation approaches to overcome 

some of the shortcomings of event-based P-Q DFE models. In addition, Smithers (2012) 

recommended that a JPA to DFE that derives the flood frequency and accounts for uncertainties 

related to model inputs should be investigated.  

Loveridge and Rahman (2012) investigated the probability distribution of losses, i.e., the 

difference between rainfall and direct runoff, and the associated impact of the losses on flood 

estimates. The study found that the use of distributed inputs could lead to more realistic 

estimates of design floods in comparison to the design event approach. Dlamini (2019) applied 

a JPA using the SCS-SA model (Ensemble SCS-SA) to derive flood frequency curves. The 

results obtained by Dlamini (2019) have shown that the standard single event SCS-SA model 

performed poorly when using published CN values. Dlamini (2019) recommended that: (a) 

further investigations with the Ensemble SCS-SA model be performed at catchments with 

varying climatic conditions, (b) the probability distributions of both antecedent moisture 
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conditions and time to peak should be improved, and (c) the sampling variability techniques 

should be investigated. Dlamini (2019) and Smithers et al. (2021) have recommended that the 

Ensemble SCS-SA approach be further investigated. 
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2. SUMMARY OF PROGRESS MADE IN MSC ENG STUDY 

In the following section, the key findings from the MSc study by Maharaj (2020) are presented.  

2.1 Key Findings 

The SCS-CN model is simple to use and only requires a CN that can be selected from a 

published CN table and readily available design rainfall data for T-year RPs (PT) as an input 

(Mishra and Singh, 2003; Hawkins et al., 2009). Therefore, the CN used to estimate a 

stormflow depth is a fundamental aspect of the model. The SCS-CN runoff equation was 

originally developed to transform a daily rainfall depth to a stormflow depth. The CNs used for 

the transformation, are generally obtained from published tables, containing CNs derived from 

observed data from catchments in the USA for selected land cover and soil classes used in the 

USA, and using c = 0.2 (Hawkins et al., 2009). The published CNs are widely used 

internationally, however, the accuracy of the CN values that were published by the SCS are 

unknown (Woodward et al., 2002; Woodward, 2017). 

The use of published CNs limits the application of the SCS-SA model on catchments with land 

cover classes and Hydrological Soil Groups (HSGs) specific to South Africa (SA). In addition, 

numerous studies have concluded that CNs derived from local data result in better estimates of 

stormflow (Hawkins et al., 2009; Stewart et al., 2011; Tedela et al., 2011; Maharaj, 2020). In 

the SCS-SA model, the c value used with the SCS-CN equation is not consistent with the c 

value used to calculate the published CNs, thus increasing the accuracy and uncertainty related 

to the estimated stormflow depths. With the increasing occurrence of flood events, evaluating 

the CNs used with the SCS-SA model is vital to improve the estimates of design stormflow 

depths from the model.  

A review of literature indicated that the relatively long periods of observed and simulated P-Q 

data, that are currently available, could be used to verify popular CN derivation techniques. A 

significant effort was spent trying to identify and correct errors associated with the observed 

P-Q data to be used in the study. However, despite the challenges with sourcing reliable 

observed data and identifying catchments with relatively homogeneous land cover and soil 

characteristics, 11 catchments were used in the study. A methodology was developed to assess 

various CN derivation techniques to best derive published CNs, using either observed or 

simulated P-Q values. 
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The ACRU model (Schulze, 1989) was parameterised using the conventional rules (Schulze et 

al., 1994; Smithers and Schulze, 1995) and the Rowe (2020) rules to simulate runoff depths 

and subsequently derive CNs. Rowe (2020) defined an additional output called the UQFLOW 

On the Day (UQFLOW OTD) to correct the discrepancy (in the conventional ACRU model) 

between the volume of STORMF that is used to estimate the simulated peak discharge and the 

UQFLOW volume released on a particular day. Therefore, Maharaj (2020) used the simulated 

UQLOW OTD values to derive CNs. In this document, the simulated UQFLOW OTD are 

referred to as simulated Q depths for ease of readability. When simulated daily Q depths were 

used to derive CNs, an “S” was added before the abbreviation, for example, if simulated daily 

Q values were used to calculate the CN with a c of 0.1, the abbreviation would be S-CN,0.1. 

A range of goodness-of-fit and performance statistics such as linear regression analyses, the 

coefficient of determination (R2), Mean Absolute Relative Error (MARE), mean relative error, 

Nash-Sutcliffe efficiency coefficient and the root mean square error were identified and used 

in the evaluation of the derived CNs and simulated Q depths from the SCS-SA model. The 

performances of published and data derived CNs were evaluated in terms of observed design 

stormflow depth (QT,O) estimation. The published and derived CNs were assessed to identify 

the optimum CNs, and the single best CN derivation technique that results in the best estimates 

of QT,O was selected.  

Based on the results that were obtained, there were differences between the CNs derived with 

c = 0.2 and the published CNs that were associated with c = 0.2. The CNs derived using 

observed Annual Maximum P-Q events and c = 0.1 (AMS CN0.1) were closest to the published 

CNs. If observed P-Q data are available, the most suitable method currently identified in this 

study to replicate the published CNs is the CN derived graphically using the Annual Maximum 

P-Q series. This is the method that was originally used to graphically derive the CNs (Hawkins 

et al., 2009) that are published in the National Engineering Handbook (AMS CNNEH,0.1). The 

methods that resulted in CNs similar to the published CNs were applied with Q depths 

simulated using the ACRU model. The CNs derived using simulated Q values from the 

conventional ACRU parameterisation (ACRUCON-P) were comparable to the CNs derived using 

observed P-Q data. The simulated annual maximum Q depths from ACRU parameterised using 

the rules developed by Rowe (2020) (ACRUTR-P) resulted in derived CNs that were more 

similar to the published CNs than the CNs derived using observed P-Q data. This was expected 

because the CNpublished values were used to calibrate some of the parameters used with ACRUTR-
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P. Nevertheless, the mean S-CNAMS,0.1 and AMS S-CNNEH,0.1 (derived using simulated Q depths 

from ACRUTR- P) resulted in derived CN values that were most similar to the published CNs, 

with the least error.  

The published CNs were then assessed to determine whether the stormflow estimated using the 

SCS-CN equation (QT,S) applied with published CN values resulted in good estimates of design 

observed stormflow depths (QT,O). The results of the analysis using published CNs indicated 

that the published CNs resulted in poor estimates of QT,O. However, the CNs calculated with c 

= 0.1 and design observed P-Q depths for the 10-year return period (CN10,0.1) resulted in 

improved estimates of QT,O. Similarly, the CN10,0.1 derived using Q depths simulated with 

ACRUTR-P (S-CN10,0.1) also resulted in improved estimates of QT,O compared to the published 

CNs. The S-CN10,0.1 values derived using Q values simulated using ACRUCON-P resulted in 

poorer estimates of QT,O in comparison to the CN10,0.1 and S-CN10,0.1 (ACRUTR-P).  

The CN10,0.1 and S-CN10,0.1 (ACRUTR-P) resulted in improved estimates of QT,O compared to the 

CNpublished values. However, errors in the observed data could be translated to the CNs derived 

with observed data. Errors in rainfall data could also have an impact on the accuracy of 

simulated Q depths that may be used to derive CNs. Furthermore, errors when selecting a 

CNpublished value for a catchment could result in errors when estimating QT,S using CNpublished 

values. Therefore, the derived CN10,0.1 or S-CN10,0.1 for specific Land Use Land Cover (LULC), 

Stormflow Potential (SP), and HSG combinations need to be evaluated using PT and QT,O 

depths from multiple different catchments with the same SP, LULC and HSG to gain 

confidence in the CN10,0.1 to estimate QT,S. The successful derivation of CN10,0.1 values is also 

dependent upon the availability of an adequate length of P-Q datasets. Therefore, the reliability 

of CN10,0.1 values on catchments with varying record lengths of data should also be 

investigated. In addition, it may be beneficial to evaluate the use of the average CN computed 

from all the CNRP values to eliminate the bias with using the CN10,0.1, derived from the QT,S for 

the 10-year RP, for all RPs.  

The study by Smithers et al. (2021) investigated how the estimated design stormflow depths 

from the different CN determination methods can be used as input in the SCS model to 

determine the design peak discharges. The design peak discharges obtained from translating 

the design stormflow depths determined from the CNs simulated from ACRUCON-P 

parameterisation consistently resulted in better estimates of the observed design peak 

discharges compared to the other CN determination methods. However, the S-CN10,0.1 
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calculated using Q depths from ACRUCON-P generally resulted in an underestimation of 

observed Q depths (Maharaj, 2020). It is evident that there is a poor translation of good, 

simulated design volumes (derived using the CN10,0.1 and S-CN10,0.1 from ACRUTR-P) into good 

design peak discharges. There is therefore an inconsistency between the QT,O and design peak 

discharge outputs from the SCS-SA model that also needs to be addressed. This could also 

indicate that there may be a flaw in the peak discharge equation that may have to be 

investigated.  

2.2 Concluding Remarks 

There are several different approaches to deriving CNs using observed, or simulated, P-Q 

depths. However, the CN values derived using the different methods may be dissimilar and 

could lead to different fundamental definitions of the CN in terms of estimating QT,S. Based on 

the CNs derived using P-Q values from the catchments used in this study, it is apparent that 

not all CN derivation techniques perform well on all the catchments and the differences 

between the data derived CNs on different catchments when using different methods is evident. 

The c value also plays a role in the magnitude of the calculated CN and an inverse relationship 

between the c and the CN is evident, where the data derived CNs were lower when a c of 0.1 

was used compared to when a c of 0.2 was used to derive CNs.  

Based on the assumption that CNpublished values could be used to reliably estimate QT, one aim 

of the study was to determine a method to replicate the CNpublished values that were selected for 

each study catchment. If observed P-Q data are available, the most suitable method currently 

identified to replicate the published CNs is the AMS CNNEH,0.1. The CNs derived using 

ACRUTR-P resulted in CNs closest to the published CNs. Therefore, if observed Q data are not 

available and to overcome the challenge with the non-homogeneity between the land cover and 

soils in the catchment and those in the published CN tables, the mean S-CNAMS,0.1 and the AMS 

S-CNNEH,0.1 (derived using simulated Q depths from ACRUTR-P) resulted in derived CN values 

that were similar to the published CNs. It is important to note that the published CNs were used 

in the calibration of rules for ACRUTR-P.  Nevertheless, if the user of the SCS-CN model has 

confidence in the published CNs, the methods that were identified to replicate the published 

CNs will be useful to derive CNs on catchments with land cover classes that are not currently 

available in the published CN tables and remove the subjective interpolation when no observed 

data are available for a given LULC and HSG combination.  
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An additional aim of the study was to assess the performance of the QT,S values calculated using 

the CNs derived using observed P-Q data or simulated Q depths. The use of the CNpublished 

values to estimate QT,S was also evaluated by comparing the QT,O and QT,S depths. The 

CNpublished values resulted in poor estimates of Q with high MARE values between the QT,O and 

QT,S. When the CN derivation methods were assessed using PT and QT,O values from all the 

catchments, the CN10,0.1 resulted in the best estimates of QT,O with the lowest overall MARE 

and a high R2. When using Q depths simulated from ACRUTR-P the overall best performance 

of the SCS-CN method was also achieved when the S-CN10,0.1 values were used to estimate 

QT,S.  

From the results obtained it was evident that the CNs derived using observed or simulated P-

Q values performed better than the CNpublished values. The main recommendations from the 

study are provided in the next section.  

2.3 Recommendations  

The following key recommendations were made by Maharaj (2020): 

(a) The currently available SCS-SA published CN table should be updated to be compatible 

with South African land cover classes and HSGs. 

(b) The CN10,0.1 and S-CN10,0.1 should be assessed in different climatic regions of SA to 

determine if the CN10,0.1 consistently results in improved estimates of QT,O. 

(c) The validity of the coefficient of initial abstraction used with the SCS-SA model needs to 

be investigated because of the problems associated with treating the initial abstraction as a 

function of c and S. 

(d) The use of national CN maps aligned with CN tables that result in improved estimates of 

QT,O, SCS-SA HSGs, SA land cover classes and an updated coefficient of initial 

abstraction, should be investigated. 
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3. PROJECT PROPOSAL: PHD STUDY 

Based on the results obtained by Maharaj (2020) and the information summarised in Chapters 

1 and 2, the project proposal for the PhD is provided in this chapter. The proposed title, research 

question, aims and objectives for the PhD study are provided below. 

3.1 Proposed Title 

Improved Performance of the SCS-SA Model and Development of a Framework for 

Uncertainty Estimation for Design Flood Estimation in South Africa using the SCS-SA Model 

as a Case Study 

3.2 Problem Statement 

A study carried out by Pablo et al. (2017), examined the validity of the c value, because the 

value of c leads to uncertainty when using the SCS-CN model. The c value is generally fixed 

at 0.2, however numerous studies have indicated that the most accurate value of c ranges 

between 0.05 and 0.2 (Woodward et al., 2003; Hawkins et al., 2009; Pablo et al., 2017). 

Therefore, the relationship between the c value used and the CN needs to be investigated to 

identify whether the currently available CN values are acceptable for use with the c values 

recommended for use with the SCS-SA model. The c value also needs to be evaluated to 

determine if it should be treated as a catchment land cover dependent variable or as a constant 

value.  

From the results obtained in the study by Smithers et al. (2021), it is evident that the use of 

both published and derived CNs resulted in a large over estimation of design peak discharges 

when using the standard SCS-SA model and that the stormflow depths are poorly estimated 

when short duration rainfall is used with the SCS-SA model. This indicates that there may be 

an issue with the SCS-SA model in terms of converting a runoff volume or depth to a peak 

discharge. Therefore, the peak discharge equation and the methods used to estimate lag time 

and the effective storm duration need to be analysed and updated if needed.  

Various calls have been made for coherent terminology relating to uncertainty (Montanari, 

2007), however, this has been difficult to accomplish (Boelee et al., 2019). Both ensemble and 

statistical methods that are used to quantify uncertainty have associated theoretical and 

mathematical problems related to them. Presently, there is minimal knowledge regarding the 
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assumptions that need to be made to quantify uncertainty and the consequences to the 

assumptions are also unknown (Boelee et al., 2019). There are, however, opportunities to 

enhance the methods used to quantify uncertainty by improving data assimilation and 

integrating different ideas to create better methods. The JPA accounts for the probability 

distributed nature of the key input variables of the model, which contains uncertainties. From 

the literature that was reviewed, it is evident that the event-based SCS-CN model has 

limitations and the application of a JPA to event-based models could result in improved design 

flood estimates. Therefore, the ongoing research contributing to uncertainty estimation is vital 

to develop guidelines to identify a suitable method for uncertainty quantification, and 

ultimately a framework for an ensemble joint probability approach and uncertainty estimation 

for DFE models used in South Africa.  

To improve the performance and accuracy of the SCS-CN model, the relationship between the 

CN and c and the conversion of Q depths to peak discharge needs to be investigated, and 

guidelines for quantifying uncertainty for event-based DFE methods is required to improve the 

limitations of these methods.  

3.3 Research Questions 

(a) Can the performance of the SCS-SA model for design volume estimation be improved by 

using locally derived and optimised input parameters? 

(b) Can the derivation of a national scale dataset containing parameter values representative of 

the whole country improve the SCS-SA model performance? 

(c) Can the estimation of design peak discharge values from design volumes be improved? 

(d) How can the uncertainty of the results from the SCS-SA and other event-based DFE 

methods be derived? 

3.4 Aim and Objectives 

The aims of the research are to investigate and improve the performance of the SCS-SA model 

in South Africa, and to develop a framework for uncertainty estimation of DFE models in South 

Africa using the SCS-SA model as a case study. The broad objectives are as follows: 

(a) Assess the performance of the SCS-SA model for design volume estimation using locally 

derived and optimised input parameters. 

(b) Assess the performance of the SCS-SA model using national scale model parameters. 

(c) Investigate and improve the transformation of design volumes into improved design peak 

discharge estimates. 
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(d) Develop a framework to estimate the uncertainty of the results from the SCS-SA and other 

event-based DFE methods. 

3.5 Proposed Methodology 

Observed P-Q data for catchments in different climatic regions in SA will be collated and 

checked for errors and inconsistencies. The observed data will be used to (a) test different CN 

derivation methods, (b) assess the relationship between c and the CN, (c) investigate the SCS 

peak discharge equation, and (d) perform initial uncertainty analysis assessments. The methods 

that perform well when applied with observed data will then be used with observed P values 

and simulated Q values to represent situations where no observed data are available. The SCS-

SA Continuous Simulation Modelling (CSM) system developed by Smithers et al. (2021) will 

be configured for South Africa at a selected spatial scale (for example the quinary scale) using 

the default assigned or updated climate (Lynch, 2004; Schulze and Maharaj, 2004), soils 

(Smithers and Schulze, 1995; Rowe, 2015), and land cover information (Smithers and Schulze, 

1995; Rowe, 2020) for SA. The simulation results from the SCS-SA CSM will be used to derive 

CNs for different RPs. The CN output from the SCS-SA CSM will be calculated for: (a) 

different Hydrological Response Units (HRUs) in the spatial unit selected, and (b) for each 

combination of soil and land cover in each HRU in the spatial unit. Option (b) is useful when 

a CN is required for a particular combination of soil and land cover for a smaller catchment in 

the selected spatial unit. The CNs derived for different soil and land cover combinations will 

also be used to generate an updated CN table for SA. The updated CN table will be used with 

South African national soil (Schulze and Schütte, 2018) and landcover (DEA and GTI, 2019) 

maps to generate CN maps for SA to investigate the spatial variability of CNs and will serve 

as a product for practitioners to use. The observed data and simulation results from the SCS-

SA CSM will also be used to investigate the coefficient of initial abstraction used in the event-

based SCS-SA model. Firstly, the Ia and S values that were originally used to obtain the c = 0.1 

value will be investigated. In addition, variations of the SCS-CN equation with different 

interpretations of the c value will be assessed. Lastly, the variability of the CN will be assessed 

by selecting Ia values from a probability distribution.    

Thereafter, design stormflow volumes and peak discharges will be simulated using the event-

based SCS-SA with the conventional and updated input values (locally derived CN and c), and 

with the SCS-SA CSM. Using observed data, the design stormflow volumes and peak 
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discharges will be evaluated and factors such as the lag time and time distribution of rainfall 

will be evaluated and refined, if necessary. 

Using the data and results from the above steps, probabilistic and non-probabilistic methods 

for uncertainty quantification will be used to assess the uncertainty associated with the SCS-

SA model parameters, uncertainty of the observed data and design values, uncertainty in the 

model structure and uncertainty of the simulated values.  

The accuracy and uncertainty of the key input parameters for DFE models are generally 

unknown. Therefore, the incorporation of the ensemble approach for parameters like the CN 

or runoff coefficients would result in the selection of the input parameters from a range of 

expected values and probability neutrality between the input P and estimated Q would be 

attained. The results from the uncertainty analysis will be used to further develop the ensemble 

joint probability SCS-SA approach. The updated ensemble joint probability SCS-SA model 

will be used to estimate design stormflow depths and peak discharges. The results from the 

refined ensemble JPA, event-based SCS-SA and SCS-SA CSM models will be compared to 

design stormflow and peak discharges computed from the observed data to determine the 

performance of the different approaches. Thereafter, the results will be used to develop 

guidelines for selecting an appropriate uncertainty assessment method for DFE in SA. 

3.6 Proposed Work Plan 

The proposed work plan for the research is provided in Appendix A.  

3.7 Expected Contributions to New Knowledge  

The expected outcomes from the study are as follows: 

(a) Updated CN and/or c values linked to land cover and HSGs used in South Africa. 

(b) Refined stormflow volume and peak discharge estimation for the SCS-SA models. 

(c) Development of a framework for uncertainty assessment for event based DFE methods 

used in South Africa. 

The following papers are expected to be published from the study: 

(a) A Review of Available Curve Number Derivation Methods and the Estimation of Curve 

Numbers on South African Catchments using Different Derivation Methods 
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(b) Evaluation of the Performance of Published Curve Numbers and Curve Number Values 

Calculated using Different Approaches to Estimate Design Runoff Depths for South 

African 

(c) Assessing the Performance of the SCS-SA Model using National Scale Model 

Parameters Derived using South African Rainfall-Runoff Data 

(d) Development of a Framework to Estimate the Uncertainty of the Results from Event-

based DFE methods: SCS-SA Case Study 



 

15 

4. REFERENCES 

Aichele, SS and Andresen, JA. 2013. Spatial and Temporal Variations in Land Development 

and Impervious Surface Creation in Oakland County, Michigan, 1945–2005. Journal 

of Hydrology 485: 96-102. 

Alfieri, L, Bisselink, B, Dottori, F, Naumann, G, de Roo, A, Salamon, P, Wyser, K and Feyen, 

L. 2017. Global Projections of River Flood Risk in a Warmer World. Earth's Future 5 

(2): 171-182. 

Ball, J, Babister, M, Retallick, M, Ling, F and Thyer, M. 2019. Australian Rainfall and Runoff: 

A Guide to Flood Estimation. Commonwealth of Australia (Geoscience Australia), 

Australia. 

Berbića, J, Kuspilićb, N and Ocvirkb, E. 2015. Uncertainties in Flood Event Estimation. 2nd 

International Conference on Advances in Statistics, All in One Conferences, Zagreb, 

Croatia. 

Beven, K. 2006. On Undermining the Science? Hydrological Processes 20 (14): 3141-3146. 

Boelee, L, Lumbroso, D, Samuels, P, Stephens, E and Cloke, H. 2017. A Review of the 

Understanding of Uncertainty in a Flood Forecasting System and the Available 

Methods of Dealing With It. 37th IAHR World Congress, International Association for 

Hydro-Environment Engineering and Research, Kuala Lumpur, Malaysia. 

Boelee, L, Lumbroso, DM, Samuels, PG and Cloke, HL. 2019. Estimation of Uncertainty in 

Flood Forecasts—A Comparison of Methods. Journal of Flood Risk Management 12 

(S1): 1-24. 

DEA and GTI. 2019. 73 Class GTI South African National Land Cover Dataset (2018). 

[Dataset]. Produced by GeoTerraImage Pty Ltd (GTI) for the Department of 

Environmental Affairs (DEA), Pretoria, RSA. 

Dlamini, NS. 2019. Development and Assessment of an Ensemble Joint Probability Event 

Based Approach for Design Flood Estimation in South Africa. Unpublished MSc thesis, 

School of Agriculture, Earth and Environmental Sciences, University of KwaZulu-

Natal, Pietermaritzburg, RSA. 

Do, HX, Zhao, F, Westra, S, Leonard, M, Gudmundsson, L, Boulange, JES, Chang, J, Ciais, 

P, Gerten, D and Gosling, SN. 2020. Historical and Future Changes in Global Flood 

Magnitude–Evidence from a Model–Observation Investigation. Hydrology and Earth 

System Sciences 24 (3): 1543-1564. 

Harbor, JM. 1994. A Practical Method for Estimating the Impact of Land-Use Change on 

Surface Runoff, Groundwater Recharge and Wetland Hydrology. Journal of the 

American Planning Association 60 (1): 95-108. 

Hawkes, PJ. 2008. Joint Probability Analysis for Estimation of Extremes. Journal of Hydraulic 

Research 46 (S2): 246-256. 

Hawkins, RH. 1975. The Importance of Accurate Curve Numbers in the Estimation of Storm 

Runoff. Water Resources Bulletin 11 (5): 887-891. 

Hawkins, RH, Ward, TJ, Woodward, DE and Mullem, JAV. 2009. Curve Number Hydrology-

State of Practice. American Society of Civil Engineers, Virginia, USA. 

Hjelmfelt, AT. 1991. Investigation of Curve Number Procedure. Journal of Hydraulic 

Engineering 117 (6): 725-737. 

Kang, MS, Goo, JH, Song, I, Chun, JA, Her, YG, Hwang, SW and Park, SW. 2013. Estimating 

Design Floods Based on the Critical Storm Duration for Small Watersheds. Journal of 

Hydro-environment Research 7 (3): 209-218. 



 

16 

Kuczera, G, Lambert, M, Heneker, T, Jennings, S, Frost, A and Coombes, P. 2006. Joint 

Probability and Design Storms at the Crossroads. Australasian Journal of Water 

Resources 10 (1): 63-79. 

Lamb, R, Faulkner, D, Wass, P and Cameron, D. 2016. Have applications of continuous 

rainfall–runoff simulation realized the vision for process-based flood frequency 

analysis? Hydrological Processes 30: 2463–2481. 

Li, C, Chai, Y, Yang, L and Li, H. 2016. Spatio-temporal Distribution of Flood Disasters and 

Analysis of Influencing Factors in Africa. Natural Hazards 82 (1): 721-731. 

Loveridge, M and Rahman, A. 2012. Probabilistic Losses for Design Flood Estimation: A Case 

Study in New South Wales. Hydrology and Water Resources Symposium 2012, 9-16. 

Engineers Australia, Sydney, Australia. 

Lynch, SD. 2004. Development of a Raster Database of Annual, Monthly and Daily Rainfall 

for Southern Africa. WRC Report No. 1156/1/04. Water Research Commission, 

Pretoria,  RSA. 

Maharaj, U. 2020. An Assessment of the Performance of Published and Derived SCS Curve 

Numbers for Design Flood Estimation in South Africa Unpublished MSc thesis, School 

of Bioresources Engineering, University of KwaZulu-Natal, Pietermaritzburg, RSA. 

Micovic, Z, Schaefer, M and Barker, B. 2017. Sensitivity and Uncertainty Analyses for 

Stochastic Flood Hazard Simulation. In: eds. Petropoulos, G and Srivastava, PK, 

Sensitivity Analysis in Earth Observation Modelling, Chapter 11, 213-234. Elsevier, 

Amsterdam, Netherlands. 

Mishra, SK and Singh, VP. 2003. SCS-CN Method. In: ed. Singh, VP, Soil Conservation 

Service Curve Number (SCS-CN) Methodology, Chapter 2, 84-145. Kluwer Academic 

Publishers, Dordrecht, Netherlands. 

Montanari, A. 2007. What do we mean by ‘Uncertainty’? The Need for a Consistent Wording 

About Uncertainty Assessment in Hydrology. Hydrological Processes 21 (6): 841-845. 

Montanari, A, Shoemaker, CA and Van de Giesen, N. 2009. Introduction to Special Section on 

Uncertainty Assessment in Surface and Subsurface Hydrology: An Overview of Issues 

and Challenges. Water Resources Research 45 (12): 1-4. 

Pablo, DB, González, J and Valdés, JB. 2017. Sources of Uncertainty in the NRCS CN Model: 

Recognition and Solutions. Hydrological Processes 31 (22): 3898-3906. 

Plummer, A and Woodward, DE. 1998. Origin and Derivation of Ia/S in the Runoff Curve 

Number System. Proceedings of the International Water Resources Engineering 

Conference, 1260-1265. American Society of Civil Engineers, Memphis, USA. 

Ponce, VM and Hawkins, RH. 1996. Runoff Curve Number: Has it Reached Maturity? Journal 

of Hydrologic Engineering 1 (1): 11-19. 

Rahman, A, Weinmann, PE, Hoang, TMT and Laurenson, EM. 2002. Monte Carlo Simulation 

of Flood Frequency Curves from Rainfall. Journal of Hydrology 256 (3-4): 196-210. 

Rowe, TJ. 2015. Development and Assessment of Rules to Parameterise the ACRU Model for 

Design Flood Estimation. Unpublished MSc thesis, Centre for Water Resources 

Research, University of KwaZulu-Natal, Pietermaritzburg, RSA. 

Rowe, TJ. 2020. Development and Assessment of an Improved Continuous Simulation 

Modelling System for Design Flood Estimation in South Africa using the ACRU 

Model. Unpublished PhD thesis, School of Agricultural, Earth and Environmental 

Sciences, University of KwaZulu-Natal, Pietermaritzburg, RSA. 

Schulze, RE. 1989. ACRU: Background, Concepts and Theory. WRC Report No. 154/1/89. 

Water Research Commission, Pretoria, RSA. 

Schulze, RE, Angus, G, Lynch, S and Smithers, JC. 1994. ACRU: Concepts and Structure. 

ACRU Theory Manual. University of KwaZulu-Natal, Pietermaritzburg, RSA. 



 

17 

Schulze, RE, George, WJ, Arnold, H and Mitchell, JK. 1984. The Coefficient of Initial 

Abstraction in the SCS Model as a Variable. In: ed. Schulze, RE, Hydrological models 

for Application to Small Rural Catchments in Southern Africa: Refinements and 

Development, Chapter 4, 52-81. Water Research Commission, Pretoria, RSA. 

Schulze, RE and Maharaj, M. 2004. Development of a Database of Gridded Daily 

Temperatures for Southern Africa. WRC Report 1156/2/04. Water Research 

Commission, Pretoria, RSA. 

Schulze, RE and Schmidt, EJ. 1987. Flood Volume and Peak Discharge from Small 

Catchments in Southern Africa, Based on the SCS Technique. WRC Report No. TT 

33/87. Water Research Commission, Pretoria, RSA. 

Schulze, RE and Schütte, S. 2018. Mapping SCS Hydrological Soil Groups over South Africa 

at Terrain Unit Resolution. Internal Report. Centre for Water Resources Research, 

School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-

Natal, Pietermaritzburg, RSA. 

Smithers, J. 2012. Methods for Design Flood Estimation in South Africa. Water SA 38 (4). 

Smithers, J, Rowe, T, Schulze, R, Mabila, N, Dlamini, N, Maharaj, U and Ramlall, R. 2021. 

Further Development, Updating and Assessment of the SCS-SA Model for Design Flood 

Estimation in South Africa Using a Continuous Simulation Approach. WRC Project 

Number K5/2926. Water Research Commission, Pretoria, RSA. 

Smithers, JC. 2016. Initiation of the National Flood Studies Programme for South Africa. 18th 

SANCIAHS National Hydrology Symposium, SANCIAHS, University of KwaZulu-

Natal, RSA. 

Smithers, JC and Schulze, RE. 1995. ACRU Agrohydrological Modelling System: User Manual 

Version 3.00. WRC Report No. TT 70/95. Water Research Commission, Pretoria, RSA. 

Stewart, D, Canfield, E and Hawkins, R. 2011. Curve Number Determination Methods and 

Uncertainty in Hydrologic Soil Groups from Semiarid Watershed Data. Journal of 

Hydrologic Engineering 17 (11): 1180-1187. 

Tedela, NH, McCutcheon, SC, Rasmussen, TC, Hawkins, RH, Swank, WT, Campbell, JL, 

Adams, MB, Jackson, CR and Tollner, EW. 2011. Runoff Curve Numbers for 10 Small 

Forested Watersheds in the Mountains of the Eastern United States. Journal of 

Hydrologic Engineering 17 (11): 1188-1198. 

Teng, J, Jakeman, AJ, Vaze, J, Croke, BF, Dutta, D and Kim, S. 2017. Flood Inundation 

Modelling: A Review of Methods, Recent Advances and Uncertainty Analysis. 

Environmental Modelling & Software 90: 201-216. 

Tramblay, Y, Villarini, G and Zhang, W. 2020. Observed Changes in Flood Hazard in Africa. 

Environmental Research Letters 15 (10): 1-8. 

Woodward, D. 2017. Proposed Revision of NRCS Curve Numbers. CWEA Storm water 

Committee, American Society of Civil Engineers-Natural Resources Conservation 

Service Task Group, Maryland, USA. 

Woodward, DE, Hawkins, RH, Hjelmfelt, A, Van Mullem, J and Quan, QD. 2002. Curve 

Number Method: Origins, Applications and Limitations. Second Federal Interagency 

Hydrologic Modeling Conference, US Geological Survey Advisory Committee on 

Water Information, Nevada, USA. 

Woodward, DE, Hawkins, RH, Jiang, R, Hjelmfelt, J, Allen T, Van Mullem, JA and D, Q. 

2003. Runoff curve number method: examination of the initial abstraction ratio. World 

water & environmental resources congress 2003, 1-10. Philadelphia, Pennsylvania. 



 

18 

5. APPENDIX A: PROPOSED WORK PLAN 

 

Figure 5.1 Proposed work plan for completion of study 


